Name:	Key	
Name:	Key	

Period: Score:

Intro to Calculus Chapter 3 PRACTICE Test (3.4 - 3.6)

You must show work to receive full credit!

1. What is the instantaneous rate of change at
$$x = 3$$
 of the function f given by $f(x) = \frac{x-3}{2x+5}$?

$$f'(3) = \frac{-1}{(\omega+5)^2} \left(\frac{-1}{121}\right)$$

2. If
$$f(x) = -2x^3 + 2x + \frac{1}{x^2}$$
, then $f'(-1) = -(-1)^2 + 2 - 2(-1)^{-3} = -(-1)^2 + 2 = -2$

$$f(x) = -2x^3 + 2x + x^{-2}$$

$$f'(x) = -(-1)^2 + 2 - 2x^{-3}$$

$$f'(-1) = -2$$

- 3. A particle starts at time t = 0 and moves along the x-axis so that its position at any time $t \ge 0$ seconds is given by $x(t) = (t+2)^2(t-3)$ meters.
- (a) Write x(t) in standard form rather than factored form. (This will make the next steps much easier©)

$$X(t) = (t^{2} + 4t + 4)(t-3)$$

$$t^{3} + 4t^{2} + 4t$$

$$+ -3t^{2} - 12t - 12$$

$$X(t) = t^{3} + t^{2} - 8t - 12$$

(b) Find the velocity of the particle at any time $t \ge 0$.

$$V(t) = 3t^2 + 2t - 8$$

(c) Find the acceleration at t = 4 seconds.

Find the value of t when the particle is moving and the acceleration is zero.

Intro to Calculus

Chapter 3 PRACTICE Test (3.4 - 3.6)

4. Which of the following is an equation of the line tangent to the graph of $f(x) = 12x^3 - 4x$ at the point

where
$$f'(x) = 12$$
 and x is positive?

$$9/9 = 12(93) + 6$$

 $8/9 = 8 + 6$

$$f'(x) = 3\omega x^2 - 4$$

8/9 =
$$12(\frac{2}{3})$$
 + b $f'(x) = 3\omega x^2 - 4$ at the point $f'(x) = 3\omega x^2 - 4$ $f(\frac{2}{3}) = 12(\frac{2}{3})^3 - 4(\frac{2}{3})$

$$12 = 36x^2 - 4$$
 $\chi = \frac{2}{3}$
 $16 = 36x^2$ $+ \frac{2}{3}$

$$\chi = \frac{2}{3}$$

 $+ (\frac{2}{3}) = \frac{8}{9}$

$$\chi^2 = \frac{16}{36} = \frac{4}{9} \quad \chi = \pm \frac{2}{3}$$

5. If
$$f(x) = \sqrt{3x^2}$$
, then $f'(1) = \sqrt{3}$

$$f'(x) = \frac{1}{2} \left(\frac{3x^2}{12} \right)^{1/2} \left(\log x \right) \quad f'(1) = \frac{1}{2} \left(\frac{3(1)^2}{12} \right)^{1/2} \left(\log(1) \right) = \frac{3(3)^{1/2}}{13} = \frac{3}{\sqrt{3}} = \sqrt{3}$$

6. A particle moves along a straight line with velocity given by $v(t) = (3x^2 - 1)^4$ at time $t \ge 0$. What is the alt) = 4(3x2-1)3(lox) acceleration of the particle at time t = 3?

7. If
$$f(x) = (2x)(x^2 - 1)^4$$
, then $f'(x) =$

$$\int_{-1}^{1} (\chi) = 2 |\chi^2| + 2\chi |4(\chi^2 - 1)^3 (2\chi)$$

$$f'(x) = 2(x^2-1)^4 + 16x^2(x^2-1)^3$$

8. If
$$f(x) = \sin(3x)$$
, then $f'\left(\frac{\pi}{2}\right) =$

$$f'(x) = 3\cos(3x)$$

$$f'\left(\frac{\pi}{2}\right) = 3\cos\left(\frac{3\pi}{2}\right) = 3(0) = 0$$

9. What is the slope of the line tangent to the curve $y = \sec(4x)$ at the point at which $x = \frac{\pi}{4}$?

$$y'=4sec(4x)tan(4x)$$

 $y'(\mp) = 4sec(\pi)tan(\pi)$
 $= 4(-1)(0)$
 $Y'(\mp) = 0$