1.1	$\# 1,2,6,8,12,14,20,24,26,27,29,32,34,36,38,41,43$

1.

(a) $Y=0.680 x+9.013$
(b) $\mathrm{m}=0.680$; There is an average weight increase of 0.680 pounds per month of age.
(c)nothing to show (graphing calc)
(d) approximately 29.413 pounds
6. (a, c)

(b) $m=\frac{-2-(-1)}{1-(-2)}=\frac{-1}{3}=-\frac{1}{3}$
14. $y=-1[x-(-1)]+1$ $y=-1(x+1)+1$
12. (a) $x=-\pi$
(b) $y=0$
2. $\Delta x=-1-(-3)=2$
$\Delta y=-2-2=-4$

8. (a, c)

(b) $m=\frac{-3-2}{1-1}=\frac{-5}{0}$ (undefined)

This line has no slope.
20. $y=\frac{1}{3} x-1 \quad$ 24. $m=\frac{-2-1}{2-(-2)}=\frac{-3}{4}=-\frac{3}{4}$
$y=-\frac{3}{4}[x-(-2)]+1$
$4 y=-3(x+2)+4$
$4 y=-3 x-2$
$3 x+4 y=-2$
26. The line contains $(0,0)$ and $(5,2)$.

$$
\begin{aligned}
& m=\frac{2-0}{5-0}=\frac{2}{5} \\
& y=\frac{2}{5} x
\end{aligned}
$$

27. $3 x+4 y=12$
$4 y=-3 x+12$
$y=-\frac{3}{4} x+3$
28. $\frac{x}{3}+\frac{y}{4}=1$
$\frac{y}{4}=-\frac{x}{3}+1$
$y=-\frac{4}{3} x+4$
(a) Slope: $-\frac{3}{4}$
(b) y-intercept: 3
(c)

(a) Slope: $-\frac{4}{3}$
(b) y-intercept: 4
(c)

29. (a) The given equation is equivalent to $y=-2 x+4$. The desired line has slope -2 and passes through $(-2,2)$: $y=-2(x+2)+2$ or $y=-2 x-2$.
(b) The desired line has slope $\frac{-1}{-2}=\frac{1}{2}$ and passes through ($-2,2$):

$$
y=\frac{1}{2}(x+2)+2 \text { or } y=\frac{1}{2} x+3 \text {. }
$$

34. (a) The given line is horizontal, so we seek a horizontal line

$$
\text { through }\left(-1, \frac{1}{2}\right): y=\frac{1}{2}
$$

(b) We seek a vertical line through $\left(-1, \frac{1}{2}\right): x=-1$.
36. $m=\frac{-4-(-1)}{4-2}=\frac{-3}{2}=-\frac{3}{2}$

$$
f(x)=-\frac{3}{2}(x-2)+(-1)=-\frac{3}{2} x+2
$$

Check: $f(6)=-\frac{3}{2}(6)+2=-7$, as expected.
Since $f(x)=-\frac{3}{2} x+2$, we have $m=-\frac{3}{2}$ and $b=2$.
38. $2=\frac{2-(-2)}{x-(-8)}$

$$
\begin{aligned}
2(x+8) & =4 \\
x+8 & =2
\end{aligned}
$$

$$
x=-6
$$

41. (a) The given equations are equivalent to $y=-\frac{2}{k} x+\frac{3}{k}$ and $y=-x+1$, respectively, so the slopes are $-\frac{2}{k}$ and -1 . The lines are parallel when $-\frac{2}{k}=-1$, so $k=2$.
(b) The lines are perpendicular when $-\frac{2}{k}=\frac{-1}{-1}$, so $k=-2$.
42. Slope: $k=\frac{\Delta p}{\Delta d}=\frac{10.94-1}{100-0}=\frac{9.94}{100}$

$$
=0.0994 \text { atmospheres per meter }
$$

At 50 meters, the pressure is
$p=0.0994(50)+1=5.97$ atmospheres.

